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Abstract. Losses of electrostatically trapped molecules are caused by the Majorana transition or the in-
elastic collisions between trapped molecules. The loss rate of electrostatically trapped ND3 molecules in
the (J = 1, K = 1, M = 1, A) state was estimated: ND3 molecules in this state have actually been trapped.
When trapping cold molecules, using 15ND3 molecules (fermion) with a minimum electric field higher than
10 kV/cm yields high stability.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.) – 34.50.Ez Rotational and
vibrational energy transfer

1 Introduction

Studying cold polar molecules is worthwhile, because the
dipole-dipole interaction is not spherically symmetric and
works at a long distance range. Baranov et al. and Goral
et al. theoretically analyzed the Bose-Einstein conden-
sation (BEC) and Fermi degeneracy of trapped polar
molecules [1–4]. DeMille proposed to use trapped polar
molecules for a quantum computers [5]. Three ways of
trapping cold molecules have been developed: pairing ul-
tracold atoms in an optical or magnetic trap, cooling of
molecules by colliding them with cold gas, and obtaining
a slow molecular beam using deceleration or selecting of
slow molecules.

The first method uses photoassociation or Feshbach
resonance. Kerman et al. produced ultracold RbCs*
molecules using photoassociation [6]. Inouye et al. [7] and
Stan et al. [8] produced cold KRb and LiNa molecules us-
ing Feshbach resonance. However, molecules constructed
using photoassociation or Feshbach resonance are mostly
in excited states. Sage et al. obtained cold RbCs molecules
in the absolute ground state [9], using the method pro-
posed by Kerman et al. [10]. However, the number of
molecules in the ground state was very low.

The second method has been developed since 1997. Us-
ing a static magnetic field, Harvard group trapped CaH
molecules precooled through buffer-gas collision [11,12].
This method is useful only for paramagnetic molecules.
Using an electrostatic trap is preferable for non-
paramagnetic molecules. However, using buffer-gas cool-
ing to load molecules into an electrostatic trap with high
voltage is difficult, because of the break down between the

a e-mail: kajita@nict.go.jp

electrodes. There is also an idea to cool trapped molecules
(with the methods shown below) through the collision
with laser cooled atoms [13].

For the third method, the possibilities of molecular
laser cooling have been discussed by several groups. Bahns
et al. generally discussed laser cooling using a multiple sin-
gle frequency laser [14]. The possibility of Doppler cooling
of CaH molecular beam was discussed by di Rosa [15].
Novel cooling systems using optical cavities were pro-
posed by Horal et al. [16] and Vuletic et al. [17]. However,
molecules have never actually been laser cooled.

Several other methods have been developed to get
slow molecular beams. A deceleration method using a
time-varying electric field has been developed to load
polar molecules into a trap electrode [18–20]. Bethlem
et al. and Crompvoets et al. have loaded decelerated
molecules into the space enclosed by the quadrupole
electrodes [21] and the ring electrodes [22], respectively.
Junglen et al. have constructed a quadrupole guide for
selecting slow molecules from a continuous molecular
beam [23]. Molecules selected by this quadrupole guide
were loaded into a electric trap [24]. A counter-rotating
beam source [25,26] or the billiard-like collisions in crossed
beams [27] can also be used to get slow molecules.

Note that the trapping experiments by Bethlem et al.
and Crompvoets et al. and have succeeded mainly with
ND3 molecules in the (J = 1, K = 1, MJ = ±1, A)
state (weak-field seeking state). Here, J denotes the quan-
tum numbers of the total rotational angular momentum,
K and MJ are the quantum numbers of the trajectory
of the molecular rotational angular momentum parallel
to the molecular axis and electric field, and A is the
anti-symmetric state. Recently also ND3 molecules in the
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(J = 1, K = 1, MJ = ±1, S) state (strong-field seek-
ing state) have been trapped using AC electric field [28].
Here, S denotes the symmetric states. The experiments by
Junglen et al. and Rieger et al. were first performed us-
ing ND3 molecules; they later also succeeded using CH2O
and CH3Cl molecules [23,24]. ND3 molecules can eas-
ily be electrostatically manipulated for the following rea-
sons: (1) the Stark effect is significant because of the
molecule’s large permanent dipole moment and narrow
inversion doublet (1.6 GHz for 14ND3 and 1.4 GHz for
15ND3); (2) the maximum trap depth in a DC-electric field
is large, because of the molecule’s large rotational constant
B (= 154 GHz); (3) when ND3 molecules are seeded into
a Xe supersonic beam, the initial kinetic energy (before
the electric deceleration) of the molecules is reduced be-
cause of the small value of (mass[ND3]/mass[Xe]); (The
velocity distribution becomes uniform inside a supersonic
beam.) (4) the populations in the weak-field seeking states
are rather large because J = K = 1 is the ground state
of para-ammonia molecules. OH molecules also have the
advantages listed above. Bochinski et al. decelerated an
OH molecular beam first [29,30], and van de Meerakker
et al. electrostatically trapped OH molecules [31].

Evaporative cooling is a useful method of reducing the
temperature of trapped molecules, which is possible when
the trap loss rate is much less than the elastic collision
rate [32,33]. Although trap loss is also caused by technical
losses, such as collisions with background gas and noise
in the trap potential, we discuss only the intrinsic loss
caused by the transition from the weak- to strong-field
seeking states. These transitions are caused by the Majo-
rana effect (the transition between quantum states caused
by a change in the electric-field direction) or inelastic
collisions. The Majorana transition of electrostatically
trapped linear polar molecules has been analyzed in
reference [34]. It was shown that the Majorana transition
rate is inversely proportional to the energy gaps between
different sub-levels. The elastic and inelastic collisions
between electrostatically trapped linear polar molecules
in the 1Σ state have been discussed in references [35–39]
and those in the 2Π state have been discussed in refer-
ences [40–42]. When the collisional kinetic energy E is
high enough to be treated semi-classically (E > 1 K), the
elastic collision cross-section decreases

(∝ E−1/2
)

and
the inelastic collision cross-section becomes maximum
at a certain value of E (depends on the change of total
internal energy) [35,38]. When E is low enough to use the
Born approximation (E < 10−5 K), the elastic collision

cross-section is constant at any value of E and the inelastic
collision cross-section is proportional to E−1/2 for boson
and E1/2 for fermion isotopes, respectively [37,39,41]. At
ultra-low temperatures, fermion isotopes can be trapped
with higher stability than boson isotopes because of their
lower collision loss rate. The dependence of the collision
cross-sections on the electric field is rather complicated
because of the coupling of different states. The inelastic
collision cross-section is reduced significantly, taking on
a special electric field value where different states have a
level crossing between them [39].

We estimated the loss rate of ND3 molecules in the
(J = 1, K = 1, MJ = 1, A) state trapped by a DC electric
field. Trap loss is caused by transitions to the (J = 1,
K = 1, MJ = 1, S) state or the (J = 1, K = 1, MJ = 0,
A or S) states. ND3 is a symmetric-top molecule, and the
dependence of its trap loss rates on the electric field is
quite different from that of linear molecules.

2 Stark energy shift of ND3 molecule
in the (J = 1, K = 1) state

The energy structures of ND3 molecules are given by
(J, K, ID, F1, F, MF , Ω) (Ω, Ω′ = A or S) in the field free
space, where ID is the nuclear spin of D atoms (1 or 2
for K = 1) and MF is the quantum number of the com-
ponent of the hyperfine angular momentum parallel to
the electric field. F1 and F are given as follows using IN(
= 1 for 14N and1/2 for 15N

)
as the nuclear spin of an

N atom
F1 = J + IN , F = F1 + ID.

Van Veldhoven et al. precisely measured hyperfine struc-
tures of 14ND3 and 15ND3 isotopes [43,44]. When the elec-
tric field is so high that the interaction between the electric
dipole moment and electric field is much stronger than the
hyperfine interaction, MJ (the parameter that determines
the Stark effect) must be more deterministic than F1 and
F . Therefore, the energy structure under the high elec-
tric field is not described by the hyperfine quantum num-
bers, but by (J, K, ID, MJ , MN , MD, Ω) [45]. Here, MN

and MD denote the components of the nuclear spins of the
N and D atoms parallel to the electric field, respectively.
The following relations hold strictly at any electric field
strength because only one combination of (MJ , MN , MD)
holds for MF = MJ + MN + MD

• 14ND3

(J = 1, K = 1, ID = 1, F1 = 2, F = 3, MF = ±3, A) = (J = 1, K = 1, ID = 1, MJ = ±1, MN = ±1, MD = ±1, A)
(J = 1, K = 1, ID = 1, F1 = 2, F = 3, MF = ±3, S) = (J = 1, K = 1, ID = 1, MJ = ±1, MN = ±1, MD = ±1, S)
(J = 1, K = 1, ID = 2, F1 = 2, F = 4, MF = ±4, A) = (J = 1, K = 1, ID = 2, MJ = ±1, MN = ±1, MD = ±2, A)
(J = 1, K = 1, ID = 2, F1 = 2, F = 4, MF = ±4, S) = (J = 1, K = 1, ID = 2, MJ = ±1, MN = ±1, MD = ±2, S)

• 15ND3

(J = 1, K = 1, ID = 1, F1 =
3
2
, F =

5
2
, MF = ±5

2
, A) = (J = 1, K = 1, ID = 1, MJ = ±1, MN = ±1

2
, MD = ±1, A)



M. Kajita: Loss estimation of electrostatically trapped ND3 molecules 317

(J = 1, K = 1, ID = 1, F1 =
3
2
, F =

5
2
, MF = ±5

2
, S) = (J = 1, K = 1, ID = 1, MJ = ±1, MN = ±1

2
, MD = ±1, S)

(J = 1, K = 1, ID = 2, F1 =
3
2
, F =

7
2
, MF = ±7

2
, A) = (J = 1, K = 1, ID = 2, MJ = ±1, MN = ±1

2
, MD = ±2, A)

(J = 1, K = 1, ID = 2, F1 =
3
2
, F =

7
2
, MF = ±7

2
, S) = (J = 1, K = 1, ID = 2, MJ = ±1, MN = ±1

2
, MD = ±2, S).

Other (J, K, ID, F1, F, MF , Ω) states converge to the (J, K, ID, MJ , MN , MD, Ω) states when the electric field becomes
so high that (dε)2/∆i � ∆hf is satisfied [45]. Here, d is the molecular permanent dipole moment, ε is the electric
field strength, ∆i is the inversion splitting, and ∆hf is the hyperfine splitting. The hyperfine states, which have no
significant Stark effect, converge to the MJ = 0 states as the electric field strength increases [43,44]. The hyperfine
states (J, K, ID, F1, F, MF , Ω), which converge to the MJ = 0 states, are shown below
• 14ND3

(J = 1, K = 1, ID = 1, F1 = 2, F = 2, |MF | ≤ 2, A) → (J = 1, K = 1, ID = 1, MJ = 0, MN , MD, A)
(J = 1, K = 1, ID = 1, F1 = 1, F = 2, |MF | ≤ 2, S) → (J = 1, K = 1, ID = 1, MJ = 0, MN , MD, S)
(J = 1, K = 1, ID = 2, F1 = 2, F = 4, |MF | ≤ 3, A) → (J = 1, K = 1, ID = 2, MJ = 0, MN , MD, A)
(J = 1, K = 1, ID = 2, F1 = 1, F = 3, |MF | ≤ 3, S) → (J = 1, K = 1, ID = 2, MJ = 0, MN , MD, S)

MF = MN + MD, MN = ±1, 0, MD = ±1, 0

• 15ND3

(J = 1, K = 1, ID = 1, F1 =
3
2
, F =

3
2
, |MF | ≤ 3

2
, A) → (J = 1, K = 1, ID = 1, MJ = 0, MN , MD, A)

(J = 1, K = 1, ID = 1, F1 =
3
2
, F =

3
2
, |MF | ≤ 3

2
, S) → (J = 1, K = 1, ID = 1, MJ = 0, MN , MD, S)

(J = 1, K = 1, ID = 2, F1 =
3
2
, F =

7
2
, |MF | ≤ 5

2
, A) → (J = 1, K = 1, ID = 2, MJ = 0, MN , MD, A)

(J = 1, K = 1, ID = 2, F1 =
1
2
, F =

5
2
, |MF | ≤ 5

2
, S) → (J = 1, K = 1, ID = 2, MJ = 0, MN , MD, S)

MF = MN + MD, MN = ±1
2
, MD = ±1, 0.

Other hyperfine states have significant Stark effects, and
they converge to the MJ = ±1 states as the electric field
strength increases [43,44]. The hyperfine splittings are less
than 1.6 MHz for the 14ND3 and 0.3 MHz for the 15ND3

isotopes, respectively [43,44]. The value of d is 1.48 D
and (dε)2 /∆i � ∆hf is satisfied when ε � 0.1 kV/cm
(for 15ND3 0.02 kV/cm). We discuss only the case when
ε � 0.1 kV/cm. The nuclear spins (MN , MD) do not in-
fluence the Stark energy shift and the dipole matrix ele-
ments. Therefore, we describe the quantum states by only
(J, K, MJ , Ω).

Figure 1 shows the energy levels of ND3 molecules
in the (J = 1, K = 1) states as a function of the elec-
tric field, which was calculated taking the coupling of the
J = 1−3 states into account. Because of the small splitting
between the inversion levels and the large rotational con-
stant, B, the Stark energy shifts of the MJ = ±1 states
are proportional to ε with 2 kV/cm < ε < 100 kV/cm.
An electric trap can easily be made with a trap potential
depth larger than 1 K. The (MJ = 0, A or S) states have
slightly negative Stark energy shifts, induced by the cou-
pling with the (J ≥ 2, K = 1) states. Molecules in the
MJ = 0 states cannot be trapped by a DC electric field

and trapping using an AC electric field also seem difficult
because the Stark energy shift is very small (< 0.1 K at
ε = 100 kV/cm).

3 Majorana transition

The Majorana effect is the M -changing transition caused
by the change of the electric field direction. For the
trapped molecules, the Majorana transition can be caused
by the molecular motion inside the electric trap. The
Majorana effect can cause a (J = 1, K = 1, MJ = ±1,
A) → (J = 1, K = 1, MJ = 0, A) transition. Because the
MJ = 0 states are strong-field seeking states, this transi-
tion causes the trap loss.

When molecules are trapped due to the linear Stark ef-
fect (depending on the sign of the electric field), Majorana
loss is caused when the sign of the electric field flips. How-
ever, the Stark effect of the ND3 molecules does not de-
pend on the sign of the electric field, but only on the angle
between the directions of electric field and the molecular
axis (parallel or perpendicular). Therefore, we analyzed
the Majorana loss of an ND3 molecule using a model, in
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Fig. 1. Energy levels of ND3 molecules in the (J = 1, K = 1)
states as a function of the electric field.

which the direction of the electric field at the molecule ro-
tates in the xz-plane (�ε = ε0 (sin ω0t, 0, cosω0t)) as shown
in reference [34]. The Schrödinger equation for the rota-
tional wavefunction is given by

i�
∂

∂t
Ψ = HΨ, H = H0 − �d · �ε (1)

where H0 is the Hamiltonian concerning the molecular
rotational-inversion energy and �d is the dipole moment
operator. In the x′y′z′-frame rotating with the electric
field, (1) is transformed into

i�
∂

∂t
Ψ ′ = (H ′ + V )Ψ ′

Ψ ′ = e−iω0tĴyΨ =
∑

MJ

a (MJ) |J, MJ〉

H ′ = e−iω0tĴyHeiω0tĴy = H0 − dz′ε0

V = �ω0Ĵy (2)

where Ĵ is the angular momentum operator. We assume
that J = 1 and MJ = 0,±1. Taking the initial state as
MJ = 1, the Majorana transition rate (1/τ) is approxi-
mated by

1/τ =
[
− d

dt
|a (1)|2

]

max

=
ω0

2

√
1

1 + (πδ/ω0)
2 (3)

where δ is the transition frequency between the MJ = ±1
and MJ = 0 states. When linear molecules (for ex-
ample, NaCl) in the (J = 1, MJ = 0) state are trapped,

Fig. 2. Majorana transition rate of ND3 molecules in the
(J = 1, K = 1, MJ = 1) as a function of electric field.

the Majorana transition rate is double the result
shown in (3) [34]. This difference is due to the
number of the transition channels; for ND3 molecule
one channel (MJ = 1 → 0) and for NaCl two channels
(MJ = 0 → 1 or − 1).

For a trapped molecule, the change of the electric field
direction is actually caused by the molecular periodic mo-
tion inside the trap. Therefore, the electric field direc-
tion also changes with the frequency of the molecular mo-
tion. We can reasonably take the angular frequency of the
molecular motion in the trap area as a typical value of ω0.
Figure 2 shows (1/τ) as a function of the electric field,
assuming that ω0 = 2π × 1 kHz (Bethlem et al., experi-
mentally found that ω0 = 2π × 0.77 kHz [21]). With the
electric field higher than 100 V/cm, (1/τ) is much less
than 1 Hz.

Equation (3) is not valid when the electric field is lower
than 100 V/cm, where the quantum energy state is de-
scribed by the hyperfine structure. In this situation, the
Majorana transition does not cause the loss of trapped
molecules, except for the 14ND3 molecules in the (J = 1,
K = 1, ID = 2, F1 = 2, F = 4, A) states and the 15ND3

molecules in the (J = 1, K = 1, ID = 2, F1 = 3/2, F =
7/2, A) and (J = 1, K = 1, ID = 2, F1 = 1/2, F = 5/2, A)
states [43].

4 Intermolecular collision

4.1 Dipole matrix elements

Here we estimate the elastic and inelastic collision cross-
sections of ND3 molecules in the (J = 1, K = 1, MJ = 1,
A) state, assuming that the collisions are caused by only
the dipole-dipole interaction. The collision cross-sections
are determined by the dipole matrix elements, which are
obtained from

〈Jm′ , Km′ , MJm′ , Ωm′ |�d|Jm, Km, MJm , Ωm〉 =
∑

n,n′
βm,nβm′,n′〈J ′, K ′, M ′

J , Ω′|�d|J, K, MJ , Ω〉0

|Jm, Km, MJm , Ωm〉 =
∑

n

βm,n |Jn, Kn, MJn , Ωn〉0
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Fig. 3. Dipole matrix elements |〈MJ = 1, A|�d|MJ = 1, A〉|,
|〈MJ = 1, S|�d|MJ = 1, A〉|, |〈MJ = 0, A|�d|MJ = 1, A〉|, and

|〈MJ = 0, S|�d|MJ = 1, A〉| of ND3 molecule in the J = K = 1
state as a function of electric field.

where |Jn, Kn, MJn, Ωn〉0 denote wavefunctions with zero-
electric field and the βn are the eigenvector components
of the Hamiltonian matrix, which show the mixture of
the wavefunctions. The non-zero dipole matrix elements
in field free space are

〈J, K, MJ , A|�d|J, K, MJ , S〉0 =

〈J, K, MJ , S|�d|J, K, MJ , A〉0 =
KMJ

J(J + 1)
d

〈J + 1, K, MJ , A|�d|J, K, MJ , S〉0 =

〈J + 1, K, MJ , S|�d|J, K, MJ , A〉0

=
K

√
(J + 1)2 − M2

J

(J + 1)
√

(2J + 1)(2J + 3)
d

〈J − 1, K, MJ , A|�d|J, K, MJ , S〉0 =

〈J − 1, K, MJ , S|�d|J, K, MJ , A〉0

= − K
√

J2 − M2
J

J
√

(2J + 1)(2J − 1)
d

which shows that the elastic collision is not caused by
the dipole-dipole interactions when there is no electric
field. Under an electric field, also dipole matrix elements
(Ω, Ω′) = (S, S) and (A, A) are induced, which makes
elastic collisions possible. The collisional transitions to the
(J = 1, K = 1, MJ = 1, S), (J = 1, K = 1, MJ = 0,
A), and (J = 1, K = 1, MJ = 0, S) states are possi-
ble, which cause the trap loss. The J = 1 → 2 tran-
sition is significant only when the collisional kinetic en-
ergy is much larger than 4hB(≈ 30 K). Figure 3 shows
the dipole matrix elements |〈MJ = 1, A|�d|MJ = 1, A〉|,
|〈MJ = 1, S |�d|MJ = 1, A〉|, |〈MJ = 0, A|�d|MJ = 1, A〉|,
and |〈MJ = 0, S |�d|MJ = 1, A〉| with J = K = 1 as
a function of the electric field. These values were calcu-
lated taking the coupling between the J = 1 − 3 states
into account. As the electric field, ε, increases, the mix-
ture of the wavefunctions |J = 1, K = 1, MJ = 1, A〉

and |J = 1, K = 1, MJ = 1, S〉 becomes significant. The
dipole matrix elements |〈MJ = 1, A|�d|MJ = 1, A〉| and
|〈MJ = 0, A|�d|MJ = 1, A〉| are proportional to ε when ε <
1 kV/cm, but they are almost constant when ε > 5 kV/cm.
The dipole matrix element |〈MJ = 1, S|�d|MJ = 1, A〉|
decreases significantly as ε increases. The elastic colli-
sion cross-section is expected to increase rapidly as ε in-
creases while ε <1 kV/cm, but it is almost constant when
ε > 5 kV/cm.

4.2 Calculation of collision cross-sections

The cross-sections of the procedures |Φ0, Φ0〉 → |Φ1, Φ2〉
caused by collision between the same kind of molecules
are obtained using [35,36,39–42]

σ(Φ1,Φ2) =
∑

L,ML

∑

L′,M ′
L

4
1 + δ (Φ1, Φ2)

π

k2

× P [(Φ1, Φ2) (L, ML) → (L′, M ′
L)]

L, L′: even numbers for bosons (14ND3)

odd numbers for fermions (15ND3) (4)

where k is the incident wave number and L (L′) and
ML(M ′

L) are the quantum numbers for the total angular
momentum of the relative motion and its trajectory par-
allel to the electric field before (and after) the collision,
respectively. The term P is the opacity function, given
by the intermolecular interaction. Only the dipole-dipole
interaction was taken into account to obtain P .

4.2.1 Ultra-low kinetic energy (Born approximation)

When the collisional interaction is weak enough, P is ob-
tained using the first order perturbation (Born approxi-
mation). The Born approximation is valid when the colli-
sional kinetic energy is small enough that P obtained by
the first-order perturbation is much smaller than unity for
each scattering terms. The dipole-dipole interaction can
be simply estimated as d2/r3, assuming that dipole mo-
ment vectors of both molecules are exactly parallel. The
above condition is actually satisfied when [42]

E =
�

2k2

2m
<

32
27

16π2ε2
0�

6

m3d4
. (5)

For ND3 molecules, (5) is satisfied when E/kB < 0.1 µK.
However, the dipole-dipole interaction is actually much
weaker than d2/r3, and the Born approximation is also
actually valid in a region of higher kinetic energy. With
more accurate calculation, Pmax < 1 is satisfied when
E/kB < 1 mK. In this paper, we apply the Born approxi-
mation with E/kB < 100 µK. Using the Born approxima-
tion, each scattering term πP/k2 is obtained using [37]

π

k2
P [(Φ1, Φ2)(L, ML) → (L′, M ′

L)] =

m2

16πε2
0�

4
|〈Φ1|�d|Φ0〉|2|〈Φ2|�d|Φ0〉|2GL,L′

(
k′

k

)
W
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GL,L′

(
k′

k

)
=

k′

k

[∫ ∞

d

j∗L (kr)
1
r3

jL′ (k′r) r2dr

]2

k =
√

2mE

�
k′ =

√
2m (E + ∆E)

�

∆E = 2R (Φ0) − R (Φ1) − R (Φ2) (6)

where k′ denotes the wavenumber of the scattering wave,
m is the reduced mass, R (Φ) is the internal energy at
the Φ state, and W is a factor determined by (Φ1, Φ2),
(L, ML), and (L′, M ′

L). Assuming k′ � k,

GL,L′

(
k′

k

)
∝

(
k′

k

)1−2L

=
(

1 +
∆E

E

)1/2−L

(7)

is satisfied [46]. The elastic collision cross-section is con-
stant with any value of the collisional kinetic energy
(E). The inelastic collision cross-sections are propor-
tional to E−1/2 for boson molecules and E1/2 for fermion
molecules (Wigner threshold law). The result using the
close-coupling method shows that (7) is actually valid in
the kinetic energy area lower than 1 mK (much higher
than (5)) [39,42].

The elastic and inelastic collision cross-sections were
obtained using the Born approximation. The dependence
collision cross-sections on the electric field (ε) taking
E = 10−7 K is shown in Figure 4. The inelastic colli-
sion cross-section is almost constant at any value of ε for
14ND3 (boson) molecules. For 15ND3 (fermion) molecules,
the inelastic collision cross-section decreases rapidly as ε
increases. For both isotopes, the elastic collision cross-
section increases as ε increases while ε < 5 kV/cm and
it is almost constant when ε > 5 kV/cm. The dependence
collision cross-sections on the collisional kinetic energy (E)
at ε = 1 and 20 kV/cm is shown in Figure 5. The Wigner
threshold law is actually satisfied. Figures 4 and 5 show
that the inelastic collision cross-sections of 14ND3 (boson)
molecules are much larger than those of 15ND3 (fermion)
molecules. The 15ND3 (fermion) molecules can much more
easily trapped than the 14ND3 (boson) molecules at an
ultra-low temperature without collision loss. The elastic
collision cross-sections of the 15ND3 (fermion) molecules
are larger than those of the 14ND3 (boson) molecules by
a factor of 3.

In this section, we have considered only the cases of col-
lisions between molecules of the same isotopes. The cross-
sections of collisions between 14ND3 and 15ND3 molecules
are given by [37]
(
14ND3 −15 ND3 cross-section

)
=

(
14ND3 −14 ND3 cross-section

)

2

+

(
15ND3 −15 ND3 cross-section

)

2
. (8)

4.2.2 Higher kinetic energy (semi-classical treatment)

When the molecules are trapped inside a ring electric
trap [22], the collisions with high kinetic energy (>1 K

Fig. 4. Elastic and inelastic collision cross-sections of 14ND3

and 15ND3 molecules in the (J = 1, K = 1, MJ = 1, A) state
as a function of the electric field. Here the collisional kinetic
energy is 10−7 K. Results shown in this figure were calculated
using the Born approximation.

are significant. The Born approximation is not valid for
such high kinetic energy. Although the close-coupling
method [39–42] is in principle valid for all areas of the col-
lisional kinetic energy (E), actually calculating it is not
realistic when many partial waves must be taken into ac-
count. However, a semi-classical treatment is useful for
rough estimations when E is so high that the broadening
of the molecular wavepacket is much smaller than the scale
size of the intermolecular interaction. Note that there is
no difference between collision cross-sections of boson and
fermion isotopes when many partial waves contribute to
a collision. Using the impact parameter b (= L/k), (4) is
rewritten as [35,38]

σ(Φ1,Φ2) =
∫

2πbP [(Φ1, Φ2), b] db

P = min(1, Q(b))

Q(b) =
4

9�2v2b4
|〈Φ1|�d|Φ0〉|2|〈Φ2|�d|Φ0〉|2

× exp[−1
3
(
4∆E

π�v
b)2]

v =
√

2E/m. (9)
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Fig. 5. Elastic and inelastic collision cross-sections of 14ND3

and 15ND3 molecules in the (J = 1, K = 1, MJ = 1, A) state
as a function of the collisional kinetic energy taking the elec-
tric field 1 and 20 kV/cm. Results shown in this figure were
calculated using the Born approximation.

Elastic and inelastic collisions as functions of the electric
field and collisional kinetic energy are shown in Figure 6.
The dependence of the elastic collision cross-section on
the electric field (ε) is same as shown in Figure 4: it in-
creases as ε increases when ε < 5 kV/cm but is almost
constant when ε > 5 kV/cm. The inelastic collision cross-
section reaches its maximum at ε ≈ 2 kV/cm. This is be-
cause |〈MJ = 0, A|�d|MJ = 1, A〉| increases as ε increases,
but it becomes almost constant when ε > 2 kV/cm. The
inelastic collision cross-section decreases as ε increases
when ε > 2 kV/cm because the energy difference be-
tween |MJ = 1, A〉 and |MJ = 0, A and S〉 increases. The
collision cross-sections are proportional to E−1/2 when
E0(∆E) 
 E, where E0 is a parameter given by [38]

E0(∆E) =
27/3m

�2

[
∆2

E |〈Φ1|�d|Φ0〉||〈Φ2|�d|Φ0〉|
π2

]2/3

. (10)

This condition is satisfied for elastic collisions and for
inelastic collisions under a low electric field. When the
electric field is so high that E0(∆E) � E, the inelastic
collision cross-section is proportional to E. The inelastic
collision cross-section is larger than the elastic collision

Fig. 6. Elastic and inelastic collision cross-sections of ND3

molecule in the (J = 1, K = 1, MJ = 1, A) state as functions
of (a) the electric field and (b) the collisional kinetic energy.
Results shown in this figure were calculated using semi-classical
treatment.

cross-section when E > 3 K also giving ε = 100 kV/cm
(E0/kB ≈ 20 K).

The classical path method is based on the assump-
tion that the kinetic energy is so high that the broad-
ening of the wavepacket is negligibly small. In the inter-
mediate kinetic energy region (0.1–100 mK), the collision
must be analyzed using the close-coupling method [39–42]
taking several partial waves into account. Calculations
using close-coupled method for linear molecules (OH,
OD, ClCN) show that the elastic and inelastic colli-
sion cross-sections are proportional to E−1 with 1 mK
< E < 100 mK. This is because P of the scattering terms
of L = 0, 1 saturates at value close to 1, while the contri-
butions of other partialwaves are small.

5 Conclusion

The loss rate of ND3 molecules trapped by a DC elec-
tric field, was estimated in consideration of the Majorana
transition and the inelastic collisions. This estimation is
useful, particularly because the ND3 molecules have al-
ready been trapped [21,22,24,28]. Evaporative cooling is
very difficult for 14 ND3 (boson) because the collision loss
rate is much higher than the elastic collision rate at any
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values of the kinetic energy and electric field strength.
The trapping time is shorter than 1 s when the den-
sity of 14ND3 molecules is higher than 107/cm3 with
E/kB = 0.1 µK. For 15ND3 (fermion) molecules, evap-
orative cooling is possible when the kinetic energy is low
(<1 µK) and the electric field is high (>10 kV/cm). The
trapping time is longer than 1 s when the density of 15ND3

molecules is lower than 1013/cm3 at E/kB = 0.1 µK and
ε = 10 kV/cm. The Majorana transition rate decreases
as the electric field increases. Therefore, a non-zero min-
imum electric field should be given at the trap center,
giving an AC electric field in one direction [35]. When the
kinetic energy is higher than 100 µK, evaporative cool-
ing of 15ND3 (fermion) molecules is also difficult. When
E/kB = 5 K, the trapping period is 1 s at a molecular
density of 3 × 108/ cm3.

To perform evaporative cooling, it is preferable to trap
ND3 molecules in the (J = 1, K = 1, MJ = 1, S) state
using an AC electric field [28]. In this case, the inelastic
collisions are not possible when the Stark energy shift is
larger than the kinetic energy. The elastic collision rate
of ND3 molecules in the (J = 1, K = 1, MJ = 1, S)
state is on the same order as that of those in the (J = 1,
K = 1, MJ = 1, A) state, while the frequency of the
AC electric field is much less than ∆i. Considering just
the intrinsic loss (Majorana loss), the trapping period is
longer than 100 s when the electric field is higher than
10 kV/cm. The trapping period is actually determined by
the technical loss, for example collision with back ground
gas.

We are thankful to Prof. H. Odashima (Meiji U., Japan) for
the discussion about the Majorana transition.
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